The Linux Boot Process

Peter Ashford

shford Computer Consulting Servic
5/10/2018




What We'll Cover

This presentation covers the Linux boot process with
the Grub2 bootloader. In the addition, we’ll touch on
Legacy and UEFI BIOS, MBR and GPT disk partitioning,
/etc/i1nit and systemd, Secure Boot, COROM/DVD
Boot, USB Boot and Network Boot.

This presentation is Distribution-agnostic.

The intended audience for this presentation is end-
users and System Administrators.



What We Won’t Cover

In an effort to keep this presentation down to a
reasonable length, some limitations had to be imposed
on what would be discussed:

e \We won’t cover dual-boot or Windows boot

e We won’t cover the low-level details of many of the
steps

e We won’t focus on any one distribution

This presentation isn’t designed for programmers
writing BIOS, bootloaders or kernel modules.



Overview

e several steps in the Linux boot proces
ill be addressed individually:

acy BIOS / UEFI
ster Boot Record / GPT
ond Stage Bootloader

Initialization

Jefault target




Legacy BIOS

The system BIOS performs several tasks during the boot
process:

BIOS is started when the system power stabilizes

Initializes hardware - CPU(s), memory controller(s)
and integrated |/O controllers

Performs some system integrity checks
(POST - Power On Self Test)

Initialize connected controllers with their own BIOS

Removes the POST portion of BIOS from the memory
map



Legacy BIOS Continued

The system BIOS continues the boot process:

e Checks the BIOS-specified devices for an MBR
(Master Boot Record)

* Upon finding an MBR with a partition set to “Active”,
the BIOS loads the MBR into memory and gives it
control of the system



What is EFI/UEFI

EFI (Extensible Firmware Interface) replaces the
Legacy BIOS

UEFI (Unified EFI) is EFI 2.0

EFI 1.x was deprecated in 2005, in favor of UEFI, but
manufacturers required several years to change

UEFI firmware supports a “Legacy BIOS” option for
backward compatibility

UEFI can be extended by the manufacturer with
modules for forward compatibility

UEFI is effectively a mini-OS



Why Use EFI/UEFI

CPU independent architecture and drivers
— Supports x86, x86-64, AArch32, AArch64 and ltanium

— Currently limited to “little-endian” processors, but projects
are underway to change that

Flexible pre-OS environment, including networking
Can read Bootloader or OS from FAT partitions
Can validate software signatures

Required to boot from GPT partition tables
Required for “Secure Boot”

Required to advertise Windows 8/10 compatibility



How to Use EFI/UEFI

e Configure the system firmware to operate in UEF!
mode instead of Legacy BIOS mode (default on
systems/motherboards with Windows 8 or Windows
10 certification)

e Configure CONFIG_EFI PARTITION during
kernel configuration (most distributions have this by
default)

e To boot to the UEFI shell, go through the BIOS and
select that option



UEFI BIOS

From the point of view of the Linux kernel, a UEFI BIOS
functions similarly to a Legacy BIOS. The exceptions are
as follows:

e The UEFI BIOS starts a few Boot Services

e When the kernel boots, these Boot Services are
terminated by calling the BIOS
“Ex1tBootServices” function

 |In a UEFI system, there are additional critical files
under “/boot/ef1” (the BIOS Boot Partition / EFI

System Partition)



BR Disk LayoL

erved space - 62 blocks
tions - Remainder of disk




Master Boot Record

The first stage of the Grub2 bootloader is at the start
of the MBR, followed by the partition table

The first-stage bootloader is a program with a
maximum size of 446 bytes

The binary program is installed from
“/boot/grub/boot. 1mg”

The first stage bootloader uses BIOS calls to read the
second stage bootloader into memory and gives it
control of the system



PT Disk Layou

dtective / Hybrid MBR - 1 block

ition entries - 32 blocks

Boot Partition / EFI System Partition - £
(usually ends at 1IMB on disk)

itions - Remainder of disk



GPT Disk Layout

* Protective / Hybrid MBR

— Stage 1 bootloader (not used)
— Entire disk (up to 2TB) in one partition of type OxEE

 Partition entries
— Up to 128 partition entries of 128 bytes each

e BIOS Boot Partition / EFI System Partition
— FAT partition
— Contains bootloader
— Usually first partition
— Usually ends at 1MB to optimize alignment



Second Stage Bootloader

e The second stage bootloader occupies the 62 blocks
between the MBR and the first partition, giving it a
maximum size of 31,744 bytes

e The program is installed from
“/boot/grub/core.1mg”.

* The second stage bootloader can read a Linux EXT
file-system (and a few others) on a physical volume.
It looks for the “/boot/grub” directory, loads the
Grub?2 configuration file and any necessary modules
and performs as directed



Grub?2

Once the second stage boot loader has loaded the
configuration files, it has access to the pluggable
modules in the “/boot/grub” directory. These
pluggable modules are similar to Linux pluggable
modules, in that they can dynamically expand the
capabilities of a minimal core OS.

Grub?2 displays a menu allowing selection of the OS or
utility to boot.



Grub2 Continued

Every menu item has an executable file (a kernel for
Linux) associated with it

There may be parameters associated with the menu
item

Almost every Linux has an InitRamFS parameter
associated with it

Other parameters may be included if needed/desired
The kernel file is loaded into memory

The parameters in the Grub configuration are passed
to the kernel



Grub2 Continuec

break out of the menu by pressing t
hich will give you a Grub2 command prc

can temporarily edit a menu entry by press
“@” key while on the entry to be edited




Kernel

When control is passed to the kernel, it performs the
following steps:

e |Load the InitRamFS file into memory

e Extract/Uncompress itself

e |nitialize and configure memory

* Create a “tmpTs” file-system

e Copy the InitRamFsS file into the tmpfs file-system

e Release the memory containing the initial InitRamFS
e Extract the InitRamFS file into the tmpfs file-system



InitRamFS

e The InitRamFS is a compressed (usually gzip) CPIO
file containing the modules and files needed to get
the kernel to the point where it can use the ROOT
file-system

e The InitRamFS usually includes a BusyBox instance
for debugging boot problems

e The contents of the InitRamFS file are controlled by
the “/etc/ini1tramfs-
tools/initramfs.cont” file



Back to the Kernel

e After the InitRamFS has been extracted, the kernel

probes the hardware to see what’s attached to the
system

* Any device that has a module in the InitRamFS will
be initialized and made available

e The kernel then initializes any virtual devices (e.g.
LVM and RAID) that have modules in the InitRamFS



Kernel Continued

e Now that the devices are ready to communicate, the
kernel looks for the ROOT file-system that was
specified in the boot command (from Grub2) and

mounts it read-only
e The change of ROOT is called a “pivot”

e After switching to the real ROOT file-system, the
tmpfs file-system containing the InitRamFS is no
longer needed and is released



Kernel Continued

At this point, the kernel has access to all the drivers

If any hardware wasn’t able to be initialized
previously, the driver is now loaded and the
hardware is initialized

The ROOT file-system is now remounted read/write,
and the system manager process is executed

The system manager can be either systemd or legacy
Init



Legacy Init

y init software brings the system to th
yecified in the In1tdefaul t line of the
Inittab file, using the scripts in the
rc?.d directories, which are links to scrip
init.d.




Systemd

ings the system to the state define
arget.

mctl get-default




Secure Boot Concepts

Secure boot requires a UEFI BIOS and a GPT disk

Secure boot uses sighed binaries to establish a chain
of trust via x.509 certificates

All PC hardware manufacturers who support Secure
Boot accept Microsoft’s signing key (part of Windows
10 certification), but very few will accept other keys

Not all Linux Distributions are available with Secure
Boot

Depending on the Distribution, Secure Boot might be
64-bit only or 32/64-bit



Secure Boot - First Stage

The first stage bootloader is a “shim” that resides in
the BIOS Boot Partition

Due to the signature and the need to verify other
signatures, the shim is far too large to fit in the MBR

The UEFI BIOS verifies that the shim is sighed with an
accepted KEK (Key Exchange Key), which, in practice,

requires that the shim be signed by Microsoft (about
S100)

The shim is very stable, and only needs to be
resigned when the cert expires



Secure Boot - Shim

e The keychain includes the KEK (from the firmware)
and any keys added during the boot process
(transient - stored in RAM)

e The shim adds a distribution-specific sighing key and
optional MOKs (Machine Owner Key) to the keychain

e The MBR may still contain a normal first stage
bootloader



Secure Boot - Second Stage

e The second stage bootloader (Grub2) resides in the
BIOS Boot Partition, and must be signed

e The kernel must be signed

e Signatures are checked against the keyring by
requesting verification from the UEFI BIOS



Secure Boot - Kernel

The InitRamFS doesn’t need to be sighed

All modules loaded by the kernel must be signed,
whether from the InitRamFS or from the ROOT
partition

Signatures are checked against the keyring by calling
the UEFI BIOS

This is the end of the trust chain



Signed Files

Sign Files Verify Signat




System State

e Was system booted through UEFI?
— Is /sys/firmware/efi
e Was Secure Boot used to boot the system?

— mokutil --sb-state

e How do you sign a custom module?
— Generate a MOK
— Install the MOK
— Sign the modules with the MOK

— Details at: https://www.suse.com/documentation/sled11/
book_sle _admin/data/sec_uefi_secboot.html






References (Distro Specific)

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise Linux/7/html/Kernel_Administration
_Guide/sect-signing-kernel-modules-for-secure-boot.html

https://docs-old.fedoraproject.org/en-
US/Fedora/18/html/UEFI_Secure Boot_Guide/

https://wiki.debian.org/SecureBoot (doesn’t work yet)
https://wiki.ubuntu.com/UEFI/SecureBoot

https://www.suse.com/documentation/sled11/
book sle admin/data/sec_uefi_secboot.html



OM/DVD Drive E

CD and DVD drives are formatted accc
orito” specification. This is an enhance
) 9660 format.

/DVD sectors are 2048 bytes long.




CD/DVD Drive Boot

The BIOS does the following to boot from optical media:
e Read and verify Primary Volume Descriptor
e Read and verify Boot Volume Descriptor

e Read and verify Boot Catalog

e Read and boot from the selected (or default) disk
Image

Disk image can be a floppy image (1.2MB, 1.44MB or
2.88MB) or a disk image (any size, 1 MBR partition).



| Torito Layout

stem reserved (unused) - 16 sectors
ary Volume Descriptor- 1 sector
t Volume Descriptor - 1 sector
Volume Descriptors - 1 sector per Vo



Torito Layo

t Catalog containing Boot Record(s) - as
ired

Images - as required




CD/DVD Drive Boot

e Due to the size of the Linux boot files (kernel and
InitRamFS), floppy images are not used

e To boot using legacy BIOS, the boot image is usually
an EXT file-system

e To boot using UEFI, the disk image is usually GPT-
partitioned

It is likely that Secure Boot will have to be disabled
during installation, even on those distributions that

support Secure Boot.



USB Flash Drive Boot

When a USB flash drive is used to boot a computer, the
BIOS causes it to be seen as either a disk drive or an
optical drive. This allows a bootable USB drive to be
formatted as either a disk drive (MBR or GPT) or as an
optical drive (“El Torito”).

Because of this, it is sometimes possible to use the
“dd” command to copy a bootable disk or . 1SO file
directly to the USB drive and have it boot. This
depends on the BIOS and boot software in the image.



etwork Boot

boot uses the PXE (Preboot eXecutic
ment) software in the NIC (Network Inte
ler), working in coordination with the BIO
rk services.




Network Boot

e DHCP is used to get the IP address and parameters
— T1lename (option 67) contains the file to boot from

— next-server (option 66) contains the IP address of the
TFTP server

— Some configurations will require additional parameters
— Some distributions may require additional parameters

e TFTP is used to download the file (pxel 1nux.0)

e pxelinux.0 uses TFTP to download configuration file
— Configuration file generates a menu (like Grub1)

— Configuration file points to kernels, InitRamFS, ROOT and
provides optional parameters



Network Boot

e The pxelinux.0 configuration file is in the
“pxel 1nux.ctqg” directory of the TFTP server

* |n order to simplify configuration functions, the
following names are checked, in order:
— Client UUID -

e.g. b8945908-d6a6-41a9-611d-74a6ab80b83d
— Client NIC MAC address, prefixed by the interface type -
e.g. 01-88-99-aa-bb-cc-dd

— Client IP address in upper-case Hex - e.g. COA80258B,
COA8025, COA802, COA80, COAS, COA, CO, C

— “‘default”



etwork Boot




Network Boo

Fl, the boot file changes from pxe

time, network boot doesn’t support Secur




References

yww.rodsbooks.com/efi-bootloaders/secure

www.rodsbooks.com/efi-bootloaders/controlli
I

://pdos.csail.mit.edu/6.828/2014/readings/boot-
pdf

://wiki.osdev.org/El-Torito




Feedback

s to improve this presentation. To the
opreciate feedback to:

ord@accs.com
Jlinkedin.com/in/peterashford




